En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo «−». Sin embargo, en una computadora, hay varias formas de representar el signo de un número. Este artículo trata cuatro métodos de extender el sistema binario para representar números con signo: signo y magnitud, complemento a uno, complemento a dos y exceso N.
Para la mayoría de usos, las computadoras modernas utilizan típicamente la representación en complemento a dos, aunque pueden usarse otras enSigno y Magnitud [editar]
Un primer enfoque al problema de representar el signo de un número podría consistir en asignar un bit para representar el signo, poner ese bit (a menudo el bit más significativo) a 0 para un número positivo, y a 1 para un número negativo. Los bits restantes en el número indican la magnitud (o el valor absoluto). Por lo tanto en un byte con solamente 7 bits (aparte del bit de signo) la magnitud puede tomar valores desde 01111111(+127) a 0 (0), y de aquí a 11111111 (-127). Una consecuencia de esta representación es que hay dos maneras de representar 0: 00000000 (0) y 10000000 (-0). De este modo +43 decimal codificado en un [byte] de ocho bits es 00101011.
Este enfoque es directamente comparable a la forma habitual de demostrar el signo (colocando "+" o "-" al lado de la magnitud del número). Algunas de las primeras computadoras binarias (la IBM 7090) utilizaron esta representación, quizás por su relación obvia con la práctica habitual. algunas circunstancias.